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Abstract
The key problem for constructing a stabilizer quantum code is how to create a set
of generators for the stabilizer of the stabilizer quantum code, i.e. check matrix.
In this paper, we suggest an approach based on the Clifford algebra to create the
check matrix for the stabilizer quantum codes. In the proposed approach, the
recursive relation of the matrix transform over the Clifford algebra is employed
to generate the check matrix. With the proposed approach, a quantum code
with any length can be constructed easily. Especially some new codes, which
are impossible via previous approaches, are constructed.

PACS numbers: 03.67.Pp, 03.67.Hk, 03.65.−w

1. Introduction

Theory of quantum error correction codes (QECC) denoted by [[N, k, d]] demonstrates
a formal possibility of efficiently storing and manipulating data for arbitrarily long time
even in the presence of noise that is below a certain threshold. Since the initial discovery
and the general descriptions of QECC were presented [1, 2], researchers have made great
progress on analyzing physical principles [3–8] along with constructing various quantum codes
[9–14]. As is well known, QECC have become one of the significant ingredients in quantum
computation [15], quantum signal processing [16] and quantum communication [17].

Currently, almost all of the advanced code constructions may be categorized into two
classes according to construction methods and principles, i.e. Calderbank–Shor–Steane’s
(CSS) structure [1, 2] and the stabilizer quantum code’s structure [13]. A thorough discussion
of the principles of quantum coding theory was presented in [18], together with a tabulation of
codes and bounds on the minimum distance for codeword length N up to 30 qubits. However,
the construction approaches are somewhat complex. In addition, for a larger N there is less
progress, and only a few general code constructions are known. It has been shown that CSS
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codes may exist as N goes to infinity. But it is impossible to construct this kind of codes for
large N with great efficiency and speed. To construct the stabilizer quantum codes, a set of
generators for the stabilizer of the stabilizer quantum codes should be designed first. However,
if N is too large, it is very difficult to obtain the generators required to construct the stabilizer
quantum codes.

In this paper, we present a new approach for generating a set of generators of the stabilizer
of the quantum codes over the Clifford algebra. In the proposed approach, the set of generators
of the stabilizer of the quantum code may be easily created; subsequently, a quantum code
with any length N can be constructed easily. Especially some new codes, which are impossible
to obtain via previous approaches, are constructed. The resulting codes are more efficient with
better parameters than the previous quantum codes.

2. Constructing quantum codes

According to the depolarizing channel, there are four basic operators acting on a single qubit,
i.e. I,X = σx, Z = σz and Y = ZX, where σx and σz are Pauli matrix components and I
is the identity operator. In an N-qubit depolarizing channel, an arbitrary operator acting on
N-qubits belongs to Pauli group:

PN = {
E⊗N

i : Ei ∈ {I,X,Z, Y }, 1 � i � N
}
, (1)

where ⊗N denotes N-fold tensor product.
To write the tensor product of Pauli matrices acting on N-qubits, we introduce the notation

X�aZ�b to denote an operator E ∈ PN , where �a and �b are N-bit binary vectors. For example,

E = X ⊗ I ⊗ Z ⊗ Y ⊗ X (2)

may be expressed as (�a|�b) = (10011|00110). Therefore, any operator in PN can be uniquely
denoted by a concatenated 2N -dimension vector:

(�a|�b) = (a1, a2, . . . , aN |b1, b2, . . . , bN). (3)

Clifford algebra Cl(2, C) is isomorphic with algebra C(2 × 2) of all complex 2 × 2
matrices, where C is a complex space. From what is described above, a linear transformation
of 2N -dimension space can be represented by the Clifford algebra with 2N generators, namely
any quantum operator in PN can be expressed by an element of Cl(2N, C). So, a Clifford
algebra Cl(2N, C) may be generated by 2N generators G(1), . . . ,G(2N) with property

G(i)G(j) + G(j)G(i) = 2δij IN , (4)

for i �= j and 1 � i, j � 2N , where these 2N generators may correspond to N operators
in PN . This motivates us to consider the construction of stabilizer codes over the Clifford
algebra. In the following, we investigate how to construct the generator matrix of the stabilizer
quantum code over the Clifford algebra.

The stabilizer quantum code with parameters [[N, k, d]] can be constructed from the
stabilizer denoted by

S =
{

N−k∏
i=1

(
I + Gmi

i

)
: mi ∈ {0, 1}

}
, (5)

where G1,G2, . . . ,GN−k are N − k commuting generators of the stabilizer. The constructed
code can correct up to t = (d − 1)/2 quantum errors. Code words of the quantum code
are states corresponding to simultaneous eigenvectors associated with eigenvalue ‘+1’ of all
operators in S, i.e.

C̃(S) = {|C〉 : |C〉 = Ŝ|C〉, Ŝ ∈ S}, (6)
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where |C〉 = |C1 · · ·CN 〉. Therefore, to construct a stabilizer quantum code, one should first
design N − k generators of S [3]. These generators of the stabilizer compose the following
check matrix:

GN−k = (Gx Gz)(N−k)×2N =

⎛
⎜⎜⎜⎝

G1

G2

...

GN−k

⎞
⎟⎟⎟⎠ , (7)

where

Gx =

⎛
⎜⎜⎜⎝

gx
11 · · · gx

1N

gx
21 · · · gx

2N

... · · · ...

gx
(N−k)1 · · · gx

(N−k)N

⎞
⎟⎟⎟⎠

(N−k)×N

(8)

and

Gz =

⎛
⎜⎜⎜⎝

gz
11 · · · gz

1N

gz
21 · · · gz

2N

... · · · ...

gz
(N−k)1 · · · gz

(N−k)N

⎞
⎟⎟⎟⎠

(N−k)×N

. (9)

Denote by GN−k a check matrix of quantum codes [[N, k, d]]; any two generators of GN−k

commute exactly when

N∑
τ=1

gx
iτ g

z
iτ = 0 mod 2, (10)

N∑
τ=1

gx
iτ g

z
jτ +

N∑
τ=1

gz
iτ g

x
jτ = 0 mod 2, i �= j, (11)

where gx
st and gz

st are over Z2, and 1 � s � N − k, 1 � t � N . Namely, the symplectic inner
product of two elements is zero [3].

To construct a quantum code [[N, k, d]], one should choose suitable 2N generators for
the Clifford algebra Cl(2N, C) and achieve an approach for constructing the check matrix of
code.

Theorem 2.1. Choose a suitable set of generators for the Clifford algebra so that condition
(4) is satisfied. Then, a quantum code with parameters [[N, k, d]] may be obtained.

Proof . Choose 2N elements G(1), . . . ,G(2N) in Cl(2N, C) to satisfy condition (4). We know
that it is an isomorphism Cl(2N, C) ∼= C(2 × 2)⊗N . So, there are N operators X1, . . . ,XN in
PN corresponding to these 2N elements. To encode k-bit message, one should first append the
message onto k operators among X1, . . . ,XN and then construct N −k generators of stabilizer.
Subsequently, the k-bit message may be encoded into N-qubits, i.e. one may obtain a quantum
code with parameters [[N, k, d]]. �

Theorem 2.1 shows that a stabilizer quantum code can be constructed over the Clifford
algebra. So, the key problem is how to choose a suitable generators for the Clifford algebra,
and construct the check matrix (i.e. the generators of stabilizer). In the following, we present
an approach to solve this problem using the Pauli matrices and matrix transform.
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First, we consider an approach of obtaining the elements for the Clifford algebra, which
is based on Pauli matrices. Let Pauli matrices σ0, σx, σy, σz be the Clifford algebra basis
elements. Making use of these matrices, we may construct the following 2N generators with
size 2N × 2N for the Clifford algebra Cl(2 × 2)⊗N :

G(1) = σ
⊗(N−1)
0 ⊗ σx

...

G(2k) = σ
⊗(N−k−1)
0 ⊗ σx ⊗ (σz)

⊗(k−1)

G(2k+1) = σ
⊗(N−k−1)
0 ⊗ σy ⊗ (σz)

⊗(k−1)

...

G(2N) = (σz)
⊗(N),

(12)

where k = 0, 1, 2, . . . , N − 1. One may easily check that the set {G(1), . . . ,G(2N)} satisfies
condition (4). According to theorem 2.1, these representations of the Clifford algebra may
hence be employed to generate the check matrix for the quantum codes.

Then we consider the approach of obtaining the generators of stabilizer, which is based
on matrix transform. Generally, some well-known matrix transforms such as Hadamard
transform [19], discrete Fourier transform (DFT) and Jacket transform [20] have a useful
recursive relation:

Jpm =
m∏

i=1

Ipm−i ⊗ Jp ⊗ Ipi−1 , (13)

where p is a positive integer and p � 2. Equation (13) shows that the high size matrices
can be obtained using the lowest order matrix Jp. Thus if the lowest order matrices Jp

are orthogonal, i.e. equation (4) is satisfied, then the high size matrices obtained are also
orthogonal. Therefore, suitable Jacket matrices may be chosen for the Clifford algebra. This
result may be expressed using the following theorem.

Theorem 2.2. If N matrices Jp with size p satisfy J T
p Jp + JpJ T

p = 0, then

J T
K JK + JKJ T

K = 0, (14)

where K = pN .

Proof . Employing equation (13), we have

J T
K =

N∏
i=1

IpN−i ⊗ J T
p ⊗ Ipi−1 , (15)

J T
K JK =

N∏
i=1,j=1

(IpN−i IpN−j ) ⊗ (
J T

p Jp

) ⊗ (Ipi−1Ipj−1) (16)

and

JKJ T
K =

N∏
i=1,j=1

(IpN−i IpN−j ) ⊗ (
JpJ T

p

) ⊗ (
Ipi−1Ipj−1

)
. (17)

Thus,

J T
K JK + JKJ T

K =
N∏

i=1,j=1

(IpN−i IpN−j ) ⊗ (
J T

p Jp + JpJ T
p

) ⊗ (
Ipi−1Ipj−1

)
. (18)

Obviously, if J T
p Jp + JpJ T

p = 0 then equation (14) exists. �
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Theorem 2.2 shows that if the lowest order matrices satisfy the condition in equations (10)
and (11), then the high size generators obtained with the recursive relations also follow this
condition. This provides a very convenient way for the construction of stabilizer quantum
codes, since small size matrices which satisfy the condition in equations (10) and (11) can be
easily found. Subsequently, a larger length stabilizer quantum code may be constructed using
the recursive relation of matrices over the Clifford algebra.

After generators of stabilizer of the quantum codes have been generated, the stabilizer
quantum code [[N, k]] can be constructed. Generally, the proposed approach may be described
as follows. Over the Clifford algebra, one obtains the concatenated matrix GN = (Gx Gz).
Subsequently, a check matrix GN−k is achieved according to theorem 2.1. Then, a set of
generators MS = {Gi : 1 � i � N − k} for the stabilizer S in equation (5) are obtained.
Therefore, the normalizer of S can be denoted by

N (S) = {Ej : EjGi = GiEj , Ej ∈ PN,Gi ∈ S}. (19)

One may easily find that there are N +k mutually commuting independent generators of N (S)

denoted by E1, . . . , En+k . For Ei , Ej ∈ N (S), it is easy to prove that both Ei + Ej and EiEj

belong to N (S), which implies that N (S) can generate a linear subspace of Pn. Thus, k
operators E1, . . . , Ek can be selected from N (S) such that the set

� = {G1, . . . ,GN−k, E1, . . . , Ek} (20)

is an independently commuting set. In terms of that described above, N operators
X1, . . . ,XN ∈ PN over Cl(2 × 2)⊗N correspond to 2N elements G(1), . . . , G(2N). For two
operators Ei ,Gl ∈ �, there is an operator Xi satisfying XiEi = −XiEi and XiGl = GlXi for
1 � i � k and 1 � l � N − k respectively.

Since the encoding on N-qubits can be written as a tensor product of single qubit states
[13], the encoder of QECC generates one of N-qubit logical states as follows:

|c〉N = 1√
2N−k

(
N−k∏
l=1

(I + Gl )

)
X c1

1 · · ·X ck

k |0N 〉)

= 1√
2N−k

X c1
1 · · ·X ck

k

∑
Gl∈S

Gl|0N 〉), (21)

where |0N 〉 = |0 · · · 0〉 is the initially prepared N-qubit state. |c〉N is a codeword obtained
from k-qubit messages |c〉k = |c1 · · · ck〉.

Above, we have provided a general approach for constructing quantum codes. In the
following, we present examples for the QECC construction based on Hadamard matrices. A
binary Hadamard matrix HN = (hij )N×N is defined as a square matrix of the size N × N . It
satisfies two conditions, i.e. all entries are ‘1’ or ‘ − 1’ and two distinct rows are orthogonal.
The Hadamard matrix has the following recursive relation:

HN = H2 ⊗ HN/2 =
m∏

i=1

(I2m−i ⊗ H2 ⊗ I2i−1), (22)

where N = 2m,m ∈ {1, 2, . . .}, and H2 is the 2 × 2 Hadamard matrix. Thus, one has

H4 = H2 ⊗ H2 =
(

H2 H2

H2 −H2

)
. (23)

Generally, if 1 and − 1 are replaced by 0 and 1, a Hadamard matrix is changed into a matrix
over Z2. Taking a mapping 1 → X and −1 → Z, sequentially, a binary concatenated matrix
may be gained with the correspondence in equation (2). According to H4 in equation (23),

5



J. Phys. A: Math. Theor. 41 (2008) 145304 G Zeng et al

with equation (3), one obtains a concatenated matrix G4×8 that can be denoted by

G4×8 = (
Gx

4G
z
4

) =

⎛
⎜⎜⎝

1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0

⎞
⎟⎟⎠ , (24)

where Gx
4 and Gz

4 are generated from H4 with the elements mapping described. These maps
are employed here and thereafter. By this means, one achieves a multilevel matrix GN×2N

which is generated from the recursive relations of the Hadamard matrix HN according to
equation (22). It is easy to prove that all rows of G4×8 satisfy the conditions in equation (10)
and (11). In fact, for any two distinct rows �hi = (hi1, . . . , hi8) and �hj = (hj1, . . . , hj8) of
G4×8, one obtains

∑4
k=1 hi,khi,4+k = 0 mod 2 and

∑4
k=1(hi,khj,4+k + hj,khi,4+k) = 0 mod 2

with i �= j . However, one cannot construct a quantum code using G4×8 because of the
quantum Hamming bound

∑t
j=0

(
N
j

)
3j 2k � 2N [15]. Thus, the constructed matrices are not

valid for all ratio k/N of quantum code under the quantum bound. We consider the case of
N > 5 in the following.

Making use of the recursive relation of the Hadamard matrix in equation (22), one
can easily get the concatenated matrix G8×16 similar to G4×8 in equation (24). Obviously,∑8

k=1 hi,khi,8+k = 0 mod 2 and
∑8

k=1(hi,khj,8+k + hj,khi,8+k) = 0 mod 2 for any i, j with
i �= j . So 8 − k rows of the generator matrix G8−k of the stabilizer quantum code [[8, k]] can
be selected randomly from all rows of G8×16. By similar means, a kind of generator matrices
GN−k used for the construction of the stabilizer quantum codes [[N, k]] can be designed from
the constructed Hadamard matrix HN .

Corollary 2.1. Making use of the recursive relation of the Hadamard matrix H2m = H2⊗H2m−1 ,
one may obtain the quantum codes with the parameters [[N, k]], where N = 2m for m � 3.

Proof . From the matrix H2m , one obtains the matrix G2m×2m+1 , whose rows can be denoted
by �hi = (hi,1, . . . , hi,2m, hi,2m+1, . . . , hi,2m+1) for 1 � i � 2m. Because of the special
structure of H2, with theorem 2.2 it can be calculated that

∑2m

τ=1 hi,τ · hi,2m+τ = 0 mod 2
and

∑2m

τ=1(hi,τ · hj,2m+τ + hj,τ · hi,2m+τ ) = 0 mod 2, which implies that all rows of H2m satisfy
the conditions in equations (10) and (11). Thus, any 2m −k rows of G2m×2m+1 can be composed
of the generator matrix G2m−k of the stabilizer. With the 2N elements {G(1), . . . ,G(2N)} over
the Clifford algebra Cl(2N, C), quantum code [[2m, k]] for m � 3 may be obtained by making
use of the encoder in equation (21). This completes the proof of the theorem. �

Corollary 2.2. Since H22m+1 = H2 ⊗ H4m , all rows of the concatenated matrix G22m+1×22m+2 of
H22m+1 satisfy the conditions in equation (10). Furthermore, 22m+1 − k rows of the generator
matrix G22m+1−k of the stabilizer quantum code [[22m+1, k]] over the Clifford algebra Cl(2N, C)

can be selected randomly from 22m+1−k rows of the concatenated matrix G22m+1×22m+2 for m � 2.

Corollary 2.3. Since H4m = H4 ⊗H4m−1 , all rows of the concatenated matrix G4m×2·4m of H4m

satisfy the conditions in equation (10). Consequently, 4m − k rows of the generator matrix
G4m−k of the stabilizer quantum code [[4m, k]] over the Clifford algebra Cl(2N, C) can be
selected from any 4m − k rows of G4m×2·4m for m � 2.

As examples, we present some stabilized quantum codes obtained using the proposed
approaches. In terms of the obtained Hadamard matrix H4m for m = 2, one may obtain
the quantum code CH16 = {[[16, k, d]] : k + d = 17, 1 � k � 15, 2 � d � 16}.
Similarly, based on the obtained matrix H22m+1 for m = 2, one obtains the quantum code

6
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Table 1. Parameters of the constructed QECC and the corresponding matrices.

Parameters Multilevel-constructed
of QECC matrices

[[2m, k, d]] H2m = H2 ⊗ H2m−1

[[4m, k, d]] H4m = H4 ⊗ H4m−1

[[2m+1, k, d]] H2m+1 = H2 ⊗ H4m

[[4m, k, d]] H4m = H4 ⊗ H4m−1

CH32 = {[[32, k, d]] : k + d = 33, 1 � k � 31, 2 � d � 32}. Furthermore, one can
construct the quantum codes [[4m, k, d]] and [[22m+1, k, d]] from H4m and H22m+1 for m � 3,
respectively, by making use of similar means. More stabilizer quantum codes based on the
proposed approach will be presented in the near future. For clarity, we list some types of
quantum codes with the parameters {[[N, k, d]] : k + d = N + 1} constructed using the
proposed approaches in table 1.

3. Conclusions

Based on the Clifford algebra, a new approach for constructing QECC is proposed. The key
point of the proposed approach is to construct the generators of stabilizer of the quantum codes
over the Clifford algebra. Two ways of creating generators of the quantum codes are presented.
Since the recursive relations of the matrix representations of the Clifford algebra, the stabilizer
quantum codes with arbitrary codeword length N can be constructed easily. In addition, some
new codes, which are impossible based on the previous approaches, are obtained.
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